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On stochastic areas and averages of planar Brownian motion 
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Paris Cedex 05, France 

Received 4 April 1989 

Abstract. Duplantier has computed the characteristic function (CF) of the stochastic area 
of planar Brownian motion taken with respect to its centre of gravity. In this paper it is 
shown that this result can be deduced from Ltvy’s stochastic area formula. Moreover, 
Duplantier’s stochastic area is shown to have the same law as the stochastic area of the 
restriction to the time interval [0, 13 of the Brownian ring defined on the time interval [0, +I. 

The same method also applies to the stochastic area formulae, obtained by Biane and 
Yor, which are relative to certain planar processes associated with the orthogonal decompo- 
sition of Brownian motion along the L2[0,  11 basis of Legendre polynomials. 

1. Introduction 

Denote by 5 x 7 the quantity Im(&), for 5, 7 E @. Let (Z, = X ,  +ius, s 3 0) be the 
complex-valued Brownian motion, with 2, = 0, and let G = ds 2, be its centre of 
gravity over the time interval [0,1]. In the preceding article, Duplantier computed the 
distribution of 

dG = 1,’ (z, - GI x d(z,  - G )  

after obtaining its CF (characteristic function) 

4 
cosh A + 3 sinh A /  A * 

E[exp(iAdG)] = 

In this paper, we show how to derive (1.1) from the celebrated LCvy (1950) formula: 

exp( iAd) )Z ,=z  = - ] ( A )  exp( -!$(A coth-‘ A - 1) 

where d = 
4 and 3 in formula (1.1) above, we shall extend (1.1) by computing the CF of 

Z, x dZ,. In fact, in order to understand better the roles of the constants 

lo1 ( Z ,  - a G )  x d(Z, - aG) 

for any (Y E R, again with the help of (1.2). This is done in 0 2. 
In § 3 we remark that, when 11 - (a/2)1< 1, the law of dff) is that of the stochastic 

area of the restriction to [0, 13 of the Brownian ring (called the Brownian bridge, or 
Brownian lace, by probabilists) defined on the time interval [0, a], for some constant 
a > 1 (in the case a = 1, a =$). Section 4 is devoted to a few generalisations of the 
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previous results, and further remarks. In particular, we discuss how the results obtained 
in $0 2 and 3 are related to the orthogonal decomposition of Brownian motion along 
the L2[0,  11 basis of Legendre polynomials, which-as shown by Biane and Yor 
(1986)As intimately linked with the stochastic area of Brownian motion. Furthermore, 
the discussion made in $ 3 for 11 - ( ( ~ / 2 ) 1 <  1 is then extended to any (Y E R .  

2. Reduction to LRvy's formula (1.2) 

Consider the decomposition 

z, = 2, + SZ, S S l  

where (2, = Z, - sZ, , s c 1) is a representation of the Brownian ring. Furthermore, 
since for every s we have? 

E[r? ,X, ]  = E [  ?sYl] = 0 

the Brownian ring (is, s S 1) is independent of the variable Z , .  
Using the decomposition (2.1), we develop d = 1; Z, x dZ,, and we find 

d = 2+ z1 x p where 2 = lo' 2, x d i ,  (2.2) 

(2.3) p = ( s d2,  - 2, ds)  = ( s dZ, - Z, ds ) = Z, - 2 ds 2,. lo1 id I: 
This last expression for p is obtained from the previous one by integration by parts. 

We remark that the first equality in (2.3) expresses p in terms of the process 2; 
therefore, since the process (.f,,-s< 1 )  and the variable 2, are independent, we find 
that the three-dimensional RV (d, p )  is independent of the variable 2, ; this fact shall 
play an essential role in what follows. We also note that the last equality in (2.3) may 
be written as 

pzZ1-2G.  (2.4) 

We now proceed towards the computation, for any (Y ER, of the CF of 
doing so, we remark, with the help of (2.4), that 

Before 

(2.5) d ( 0 )  = &q & ( I '  = dG d(2) = 2 
and, in general, 

d(")= 2+ ( 1  - (Y/2)Z, x p = d - (a/2)Z1 x p. (2.6) 
We now prove that, for any A E R ,  and z E @, 

E[exp(iAd'"') IZ1 = z ]  = E[exp(iAd) I Z, = ( 1  - a/2)z]. (2.7) 
Indeed, we have, on one hand, from (2.6), 

E[exp(iAd(" ') /Z, = z ] = E [ e x p i A ( ~ + ( 1 - ( ~ / 2 ) z x p ) ]  

using the fact, already pointed out before (2.4), that the pair (2, p )  is independent of 
the variable Z,. 

t This is due to the linearity of the expectation, and the fact that E[X,X,] = E[ YsY,] = min(s, t ) .  
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On the other hand, we deduce from (2.2) that 

E[exp( iAd)IZl=( l -a /2)z]=  E[expiA(G+( l  - a / 2 ) z x p ) ]  

and we have proved (2.7). 
now follows immediately from LCvy's formula 

(1.2) and formula (2.7) by integrating in z with respect to the law of 2,. We obtain 

E[exp(iAd'")] = [ ( 1 - ~ ~ / 2 ) ~ c o s h  A + (a /2 ) (2 -a /2 )  sinh A l A 1 - I .  (2.8) 

In particular, taking respectively a = 0, 2, 1, we obtain, from ( 2 . 5 ) ,  

The computation of the CF  of 

E[exp(iAd)] = l/cosh A €[exp(iAG)] = A/sinh A 
(2.9) 

4 
cosh A +3  sinh A / A '  

E[exp(iAdG)] = 

In the preceding article, Duplantier shows how to obtain these formulae from functional 
integrals. 

3. Relationship with restrictions of Brownian rings 

The following formula: 

(3.1) 

is easily deduced from (2.6), since the right-hand side of (3.1) is equal to 

d - ( a / 2 ) 2 ,  x p .  

We shall now prove that, in the case 11 - a / 2 (  < 1, the process (2, - (a /2)uZ, ;  U 1) 
is distributed as the restriction to [0, 11 of the Brownian ring on [0, a], with a defined 
by 

(1 - a /2)2  = 1 - l / a  (3.2) 

(in the case a = 1, we find a =$). 
Indeed, a representation of the Brownian ring on [0, a ]  is 

(2, - ( u / a ) Z ,  a )  

and we have, on one hand, with the notation 2, = 2, - uZ,, 

Z,-(a/2)uZ1 = 2 , + u ( l - a / 2 ) 2 ,  u s 1  

Z,-(u/a)Z, = i , + u ( z , - ( l / a ) Z , )  U S l .  

and, on the other hand, 

Since the process (i,, U zz 1) is independent from (Z , ,  t 2 l),  the two processes ( Z ,  - 
(a/2)uZ1, U C 1) and (Z, -(u/a)Z,, U c 1) will have the same law once the Gaussian 
variables (1 - a /2)Z,  and (2, - (l/a)Z,) have the same distribution; this is so if and 
only if (3.2) is satisfied. Hence we have shown, under the condition 11 - a / 2 (  < 1, that 
the distribution of s d U )  is that of the stochastic area of the restriction to [0,1] of the 
Brownian ring on [0, a], with a defined by (3.2). 
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4. Generalisations and concluding remarks 

There are a number of points we would like to make. 
(i)  The key formula (2.7) which allows one to reduce the computation of the CF  

of dP) to that of the conditional CF  of d given Z1 is valid, mutatis mutandis, for a 
large class of complex-valued processes ( Z ,  = X, - i Y,, s 3 0). Indeed, it suffices that 
X and Y are continuous Gaussian processes, centred (i.e. they have mean 0, for every 
s), independent, have the same law and, moreover, are semi-martingalest. 

Then, the decomposition (2.1) is altered into 

2, = 2, + cp(s)Z, (4.1) 

E[X:lcpc(s) = E[XXIl (4.2) 

where q ( s )  is defined by 

and G is defined by 

(the semi-martingale hypothesis made on 2 automatically implies that cp has bounded 
variation; see Emery (1982)). 

Afterthese changes have been made, the formulae (2.4), (2.6) and (2.7) are still valid. 
Particularly interesting cases are obtained with the Gaussian processes 2 = V,, 

where, for p > -4, one defines 

V,( t )  = $ lo‘ dB, s p  t > O  

in terms of the complex Brownian motion (&, 3 3 0 ) .  The decomposition (4.1) now 
holds with cp,(s) = sP+’, and (4.3) becomes 

G, = ( p + 1) lo1 ds spV,( s)  = ( p + 1) dB, u p (  1 - U ) .  I: 
Using now the notation d, and d:) instead of d and d(OO, we recall that Biane and 
Yor (1986) have obtained the following extension of Ltvy’s formula (1.2): 

E[exp(iAd,)l V,(1) = z l =  a,(lAl) exp(-(lz12/2)6,(lAl)) (4.4) 

where 

and I ,  is the modified Bessel function of index U. 

from (2.7) and (4.4): 
We now obtain the following extension (4.6) of formula (2.8), which is deduced 

t This technical constraint-which we will not discuss here-has been at the heart of the developments and 
understanding of stochastic integration for the past thirty years; see, for example, Rogers and Williams (1987). 
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(ii) The interest of the author in the computation (1.1) of the CF of dc, made by 
Duplantier in the preceding article, was originally aroused by the following connection 
with the work of Biane and Yor (1986): these authors developed the Brownian path 
(Zl ,  t c 1) along the L2[0, 11 basis of Legendre polynomials. Precisely: 

where 

(4.7) 

P p  = dZ, PP(2s - 1) 
0 Jo up+ , (  t )  = (2p+ 1) J ds PP(2s - 1) 

and ( P p  ; p = 0, 1,2, , . .) is the sequence of Legendre polynomials, which are classically 
defined by 

1 dP 
2pp! dtP Pp( t )  =- - ( ( t 2 -  1)P). 

In particular, we find 

P o  = 2 1  and PI = lo1 dZ,(2s - 1) = 2, -2G (4.8) 

so that P I  is the variable P featured in (2.4) above. 
Moreover, the stochastic area SP has a simple representation in terms of the variables 

P p ,  namely 
m 

p = o  
d= c P P X P P + l  

where the convergence holds both in L2 and almost surely. 
Furthermore, for any p E N, Biane and Yor (1986) showed 

(4.9) 

(4.10) 

Consequently, making use of the identification (4.8), and of (2.6) which now 

(4.1 1) 

our formula (2.8), which generalises Duplantier’s formula ( l . l ) ,  can be deduced from 
the result (4.10) above taken for p = 1; in this case the functions a ,  and b,  are 

where ap and bp are defined by (4.5). 

becomes 

&&a) = d - (a /2)P,x P I  

) - 3 .  
sinh x ( x cosh x - sinh x 

x3 
b , ( x )  = x2 a1(x)=3(x  cosh x-sinh x )  

Now, in order to obtain (2.8) it remains, using (4.10) and (4.11), to integrate 

exp(iA(1- a/2)mo x ml)al(A) exp{ - (lm1l2/2)b1(A)1 
with respect to the law P(Po E dm,, p ,  E dm,) ofthe two independent, centred, Gaussian 
variables Po and P ,  with variances: 

fE(IPo12) = 1 tE(IP1I2) = f .  
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Thus, we obtain 

~ [ e x p ( i ~ d ( " ' ) I  = a 1 ( ~ ) ~ [ e x p {  - (h2/2) (1  - ./2)21P112- ( b l ( ~ ) / 2 ) I ~ 1 1 2 1 1  

and, since$lP,l* =)H, where H is an exponential variable (that is: P ( H  E dh)  = eFh dh),  
the above formula yields 

al(A) E[exp(iAd'"')] = 
1 + f [ A 2 ( 1 - ~ / 2 ) 2 + b l ( A ) ]  

which gives (2.8). 

back to LCvy's original formula (1.2) rather than relying upon its extension (4.10). 

further in a way which would relate with formula (4.10) for a general integer p .  

(4.7) of (Z,, 1s l ) ,  we introduce 

However, the purpose of $ 2  above has been to simplify this approach by going 

Nonetheless, it might be of some interest to extend the definition of dG and d("' 

Formula ( 3 . 1 )  suggests such an extension. Indeed, starting from the development 

33 

z:= c c p u p + , ( t ) P p  
p = o  

where the sequence c = ( cp ,  p EN) consists of real numbers which are all, except for 
some finite set, equal to 1 .  We then define 

d'= Z f x d Z f  id 
(from (3.1), d'"' corresponds to co= 1 - a / 2 ,  and cp = 1 ,  for p 2 1 )  and, using the 
development of Zf in terms of the sequence ( p p ) ,  we obtain the following modification 
of (4.9): 

m 

&' = 2 C k C k + l P k  P k + l  
k = O  

If p is an integer such that for any k s p ,  ck = 1 ,  we deduce from (4.10) that 

Making use of the variance formulae (see Biane and Yor (1986)) 

and of the independence of the P k ,  we can write: 

where the Y k  are independent, reduced, complex-valued Gaussian variables, and the 
vector d = (dk ; Os k 6 p )  is defined by 

dk = ACkCk+l((Zk+ 1)(2k + 3))-1'2 

dp = ( 2 p +  l)-'bp(lAl). 

O C k S p - 1  
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It now follows from theorem 2 of Biane and Yor (1987) that 

where 

l + d i '  

(iii) We now make some comments on 0 3. 
We first explain, with the help of (3.1), why, for any a ER, dmJ and d4-.' have 

the same law, as shown by (2.8). This follows from the identity in law of the two 
processes ( Z u - ( a / 2 ) u Z , ,  O s u s l )  and (Z,-[(4-a)/2]uZ1, O s u s l ) ,  which fol- 
lows from the decomposition 

2, - ( a / 2 )  uz, = 2, + ( 1 - a/2)uZ, U S 1  

the independence of (Z,, U s 1)  and Z , ,  and the fact that 2, and -2, have the same 
(Gaussian) law. 

In the particular case a = 0, this shows that (2, -2uZ,, U S 1 )  has the same law 
as ( Z , ,  u s  l ) ,  and hence is a Brownian motion. 

Next we remark that, although formula (3.1) is valid for any a E R, we presented 
an interpretation of this formula, hence of (2.8) for the CF of in terms of Brownian 
rings, only in the case 11 - a /2 )  < 1. In fact, a very different interpretation is needed 
when ( 1  - a / 2 )  2 1 .  

We have just explained why in the case 11 - a / 2 )  = 1,  which implies a = 0 or a = 4, 
and d have the same law. To complete the discussion, we now make some 

remarks about the process (ZU-(a /2)uZ, ,  u s  l ) ,  when 11 -a/21> 1 .  We first recall 
several representations of the standard Brownian ring. If ( l ( t ) ,  t S 1 )  is a one- 
dimensional Brownian motion, starting from 0, then the following processes, indexed 
by f E IO, U, 

(4.12) 

are three (different) representations of the Brownian ring, the last of which was 
constantly used above. Changing - into + in the first expression in (4.12), we define 
the three following Gaussian processes indexed by t > 0: 

(4.13) 

where 7 is a second Brownian motion starting from 0, and independent of J ;  all have 
the same law. 

The asseArtion concerning (4.12) is well known, but we remark that, using the 
notation 5, 5 and i for Brownian motion, we pass from the first expression in (4.12) 



3056 M Yor 

to the second by representing? l(u) as U[(:); then 

(1 - t )l(') 1 - t  = ti(; - 1) 

and we pass from the second expre:sion in (4.12) to the third by representingt l(u) 
as f (  1 + U )  - [( l ) ,  and then [(U) as ul( 1/ U). The same transformations give the identity 
in law between the three processes featured in (4.13). 

We shall use the notation ( e - (  t ) ,  O S  t s l ) ,  respectively ( O + ( t ) ,  t > 0), for any 
process whose law is that of the Brownian ring, respectively for any process whose 
law is that of any of the three processes featured in (4.13). The distributions of these 
two centred Gaussian processes may be characterised by their covariances: 

~ [ e - ( ~ ) e - ( t ) l =  ~ ( i  - t )  ~ [ e + ( s ) e + ( t ) ]  = ~ ( i  + t )  s < t. (4.14) 

These formulae are deduced from any of the representations in (4.12) and (4.13), and 
the well known covariance, min( s, t ) ,  of Brownian motion. 

Furthermore, we define, for 0 < c < 1, respectively for c > 0: 

respectively 

We can now end the discussion begun in § 3 by making the following statements. 
If I l-a/21<1, and c is defined by ( l - a / 2 ) 2 = l - c ,  then the law of (ZU- 

(a /2)uZ, ;  Os U s 1) is that of (@,(U); Os u s  1) (which is also the restriction to [0, 11 
of the Brownian ring defined on [0, l / c ] ) .  

If I l -a /21>1,  and c is defined by ( 1 - a / 2 ) * =  l + c ,  then the law of (Z,,- 
( a / 2 ) u Z , ; O s u s l )  is that of ( O ~ ( u ) ; O s u s l ) .  

(iv) In conclusion, we have shown in this paper how Duplantier's computation is 
related to Levy's stochastic area formula (1.2) and to the more recent works of Biane 
and Yor. Showing these connections enabled us to obtain a large variety of extensions 
of formula (1.1). 
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